650 research outputs found

    Hyperbolic reflections as fundamental building blocks for multilayer optics

    Full text link
    We reelaborate on the basic properties of lossless multilayers by using bilinear transformations. We study some interesting properties of the multilayer transfer function in the unit disk, showing that hyperbolic geometry turns out to be an essential tool for understanding multilayer action. We use a simple trace criterion to classify multilayers into three classes that represent rotations, translations, or parallel displacements. Moreover, we show that these three actions can be decomposed as a product of two reflections in hyperbolic lines. Therefore, we conclude that hyperbolic reflections can be considered as the basic pieces for a deeper understanding of multilayer optics.Comment: 7 pages, 7 figures, accepted for publication in J. Opt. Soc. Am.

    General unit-disk representation for periodic multilayers

    Full text link
    We suggest a geometrical framework to discuss periodic layered structures in the unit disk. The band gaps appear when the point representing the system approaches the unit circle. We show that the trace of the matrix describing the basic period allows for a classification in three families of orbits with quite different properties. The laws of convergence of the iterates to the unit circle can be then considered as universal features of the reflection.Comment: 3 pages, 2 eps-figures. To be published in Optics Letter

    Quantum-limited time-frequency estimation through mode-selective photon measurement

    Get PDF
    By projecting onto complex optical mode profiles, it is possible to estimate arbitrarily small separations between objects with quantum-limited precision, free of uncertainty arising from overlapping intensity profiles. Here we extend these techniques to the time-frequency domain using mode-selective sum-frequency generation with shaped ultrafast pulses. We experimentally resolve temporal and spectral separations between incoherent mixtures of single-photon level signals ten times smaller than their optical bandwidths with a ten-fold improvement in precision over the intensity-only Cram\'er-Rao bound.Comment: Six pages, three figures. Comments welcome

    Experimental investigation of high-dimensional quantum key distribution protocols with twisted photons

    Get PDF
    Quantum key distribution is on the verge of real world applications, where perfectly secure information can be distributed among multiple parties. Several quantum cryptographic protocols have been theoretically proposed and independently realized in different experimental conditions. Here, we develop an experimental platform based on high-dimensional orbital angular momentum states of single photons that enables implementation of multiple quantum key distribution protocols with a single experimental apparatus. Our versatile approach allows us to experimentally survey different classes of quantum key distribution techniques, such as the 1984 Bennett \& Brassard (BB84), tomographic protocols including the six-state and the Singapore protocol, and to investigate, for the first time, a recently introduced differential phase shift (Chau15) protocol using twisted photons. This enables us to experimentally compare the performance of these techniques and discuss their benefits and deficiencies in terms of noise tolerance in different dimensions.Comment: 13 pages, 4 figures, 1 tabl

    Perfect antireflection via negative refraction

    Full text link
    We suggest a geometrical framework to discuss the action of slabs of negatively refracting materials. We show that these slabs generate the same orbits as normal materials, but traced out in opposite directions. This property allows us to confirm that the action of any lossless multilayer can be optically cancelled by putting it together with the multilayer constructed as the inverted mirror image, with ϵ\epsilon and μ\mu reversed in sign.Comment: Some typos corrected. New references addes. Accepted for publication in Physics Letters

    Unraveling beam self-healing

    Full text link
    We show that, contrary to popular belief, non only diffraction-free beams may reconstruct themselves after hitting an opaque obstacle but also, for example, Gaussian beams. We unravel the mathematics and the physics underlying the self-reconstruction mechanism and we provide for a novel definition for the minimum reconstruction distance beyond geometric optics, which is in principle applicable to any optical beam that admits an angular spectrum representation. Moreover, we propose to quantify the self-reconstruction ability of a beam via a newly established degree of self-healing. This is defined via a comparison between the amplitudes, as opposite to intensities, of the original beam and the obstructed one. Such comparison is experimentally accomplished by tailoring an innovative experimental technique based upon Shack-Hartmann wave front reconstruction. We believe that these results can open new avenues in this field

    Quantum phases of a qutrit

    Full text link
    We consider various approaches to treat the phases of a qutrit. Although it is possible to represent qutrits in a convenient geometrical manner by resorting to a generalization of the Poincare sphere, we argue that the appropriate way of dealing with this problem is through phase operators associated with the algebra su(3). The rather unusual properties of these phases are caused by the small dimension of the system and are explored in detail. We also examine the positive operator-valued measures that can describe the qutrit phase properties.Comment: 6 page

    A geometrical setting for the classification of multilayers

    Full text link
    We elaborate on the consequences of the factorization of the transfer matrix of any lossless multilayer in terms of three basic matrices of simple interpretation. By considering the bilinear transformation that this transfer matrix induces in the complex plane, we introduce the concept of multilayer transfer function and study its properties in the unit disk. In this geometrical setting, our factorization translates into three actions that can be viewed as the basic pieces for understanding the multilayer behavior. Additionally, we introduce a simple trace criterion that allows us to classify multilayers in three types with properties closely related to one (and only one) of these three basic matrices. We apply this approach to analyze some practical examples that are representative of these types of matrices.Comment: 8 pages, 5 figures. To be published in J. Opt. Soc. Am.
    corecore